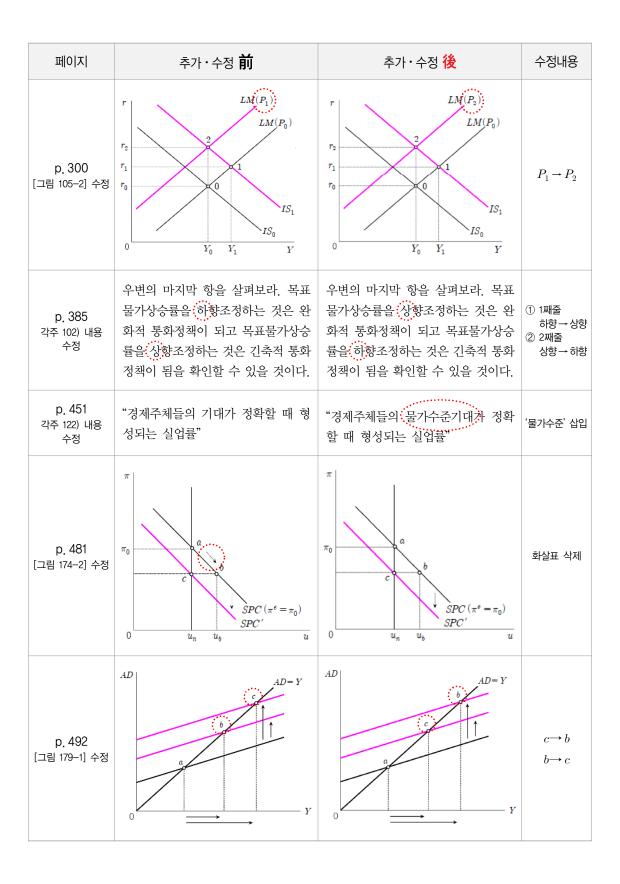
# **연습책** 거시경제학

**제2판 1쇄 정오표** (2016년 03월 23일 기준)




## 연습책 거시경제학 제2판 1쇄 - 정오표

### 내용 추가 및 오류 수정(2016년 03월 23일 기준)

2015년 9월 1일 발행된 연습책 거시경제학 제2판 1쇄에서 학습이해를 돕기 위한 추가(보완) 내용 및 오해의 여지가 있는 본문, 수식, 그래프 표현 등을 수정(정오)한 내용을 정리한 것입니다.

#### #. 연습책 거시경제학

| 페이지                               | 추가·수정 <b>前</b>                                                                                               | 추가·수정 <mark>後</mark>                              | 수정내용                                                                                   |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|
| p. 9<br>[유사문제]에서<br>4)의 내용 수정     | 최근 국민소득을 나타내는 지표로서<br>실 <mark>실GNI가</mark> 자주 사용되고 있다.                                                       | 최근 국민소득을 나타내는 지표로서<br>실질 <i>GNT</i> 가 자주 사용되고 있다. | $GNI \rightarrow GNI$                                                                  |
| p. 26<br>목차 3.의 본문<br>5번째줄        | I = 155.1, r = 0.0983                                                                                        | I = 162.5, r = 0.0958                             | ① $I = 155.1$<br>$\rightarrow I = 162.5$<br>② $r = 0.0983$<br>$\rightarrow r = 0.0958$ |
| p. 65<br>목차 4.2.2의 본문<br>1~2째줄    | 불확실성의 증가는 <del>투자감소, 대출감</del> 소 등의 대생적 원인에 의해 본원통화 ( <i>H</i> )를 감소시키는 요인이 될 수 있으 마, 민간의 현금예비율( <i>k</i> )과 | 불확실성의 증가는 민간의 현금예비율 $(k)$ 과                       | 내용 삭제                                                                                  |
| p. 123<br>[연습042]의 (2)번<br>문제 1째줄 | 고전학파 모형의 기본 가정에 대해 설<br>명한 후 <del>(10점)</del> .                                                              | 고전학파 모형의 기본 가정에 대해 설명한 후,                         | 내용 삭제 후<br>.(마침표)→,(쉼표)                                                                |
| p. 219<br>연습078의 본문<br>12번째줄      | $b_1 \geqslant 1$ , $b_2 > 0$                                                                                | $b_1 > 0, b_2 > 0$                                | $\begin{array}{c} b_1 > 1 \\ \downarrow \\ b_1 > 0 \end{array}$                        |
| p, 220<br>목차 2.의 본문<br>2째줄        | $b_1 > 1, b_2 > 0$                                                                                           | $b_1 \geqslant 0; b_2 > 0$                        | $\begin{array}{c} b_1 > 1 \\ \downarrow \\ b_1 > 0 \end{array}$                        |
| p, 235<br>목차 2,1,1의 본문<br>4째줄     | 로서 실시간으로 변화하기 때문에                                                                                            | 서 실시간으로 변화하기 때문에                                  | 내용 삭제                                                                                  |



#### 4 황종휴 ECONOMICS

| 페이지                               | 추가·수정 <b>前</b>                                                                                                                                                                                                    | 추가·수정 <mark>後</mark>                                                                                                                                                                                                  | 수정내용                                                        |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| p. 531<br>[그림 192-1] 수정           | 지 LPC SPC'SPC'SPC'SPC'SPC'SPC'SPC'SPC'SPC'SPC'                                                                                                                                                                    | 표 LPC SPC SPC SPC SPC SPC SPC                                                                                                                                                                                         | ① ↓ 삭제<br>② SPC"<br>↓ SPC"<br>③ SPC" 선<br>추가                |
| p. 553<br>[연습 201]의 (3)번<br>문제 수정 | $U = \frac{1}{2} \vec{C_1^2} + \beta \frac{1}{2} \vec{C_2^2}$                                                                                                                                                     | $U = \frac{1}{2} \stackrel{\overbrace{C_1}}{C_1} + \beta \frac{1}{2} \stackrel{\overbrace{C_2}}{C_2}.$                                                                                                                | $C_1^2 \to C_1^{\frac{1}{2}}$ $C_2^2 \to C_2^{\frac{1}{2}}$ |
| p. 762<br>목차 1.의 본문<br>4째줄        | (미래실질임금의 현재가치가 증가)                                                                                                                                                                                                | (미래실질임금의 현재가치가 감소)                                                                                                                                                                                                    | 증가→감소                                                       |
| p. 841<br>위에서 2째줄                 | $ \Pi = (P-1)(10-2P)  = -2P(P^2-6P) - 10  = -2(P-3)^2 - 8 $                                                                                                                                                       | $ \Pi = (P-1)(10-2P)  = -2P(P^2-6P) - 10  = -2(P-3)^{\frac{3}{2}} + 8 $                                                                                                                                               | -→+                                                         |
| p. 841<br>목차 3. 본문 2째줄            | $\Pi = (P-1)(14-2P)$ =-2(P-4)? 18                                                                                                                                                                                 | $\Pi = (P-1)(14-2P)$ =-2(P-4)?+18                                                                                                                                                                                     | -→+                                                         |
| p. 929<br>목차 5.2.1의 본문<br>1~3째줄   | - $Max \theta = y - sy$ s.t $sy = (n + \delta)k$<br>- $Max \theta = y - (n + \delta)k$<br>- $F.O.C : \frac{\partial \theta}{\partial k} = \frac{\partial y}{\partial k} - (n + \delta) = MP_K - (n + \delta) = 0$ | - $Max \theta (= y - sy)$ s.t $sy = (n + \delta)k$<br>- $Max \theta (= y - (n + \delta)k)$<br>- $F.O.C : \frac{\partial \theta}{\partial k} = \frac{\partial y}{\partial k} - (n + \delta) = MP_K - (n + \delta) = 0$ | 해당 내용<br>수식문구로<br>입력                                        |
| p. 977<br>목차 1.의 본문<br>6째줄        | $\frac{\dot{A}}{A} = \frac{n}{\theta - 1}$ :                                                                                                                                                                      | $\frac{\dot{A}}{A} = \frac{n}{1-\theta}$                                                                                                                                                                              | $\theta - 1 \rightarrow 1 - \theta$                         |
| p. 977<br>목차 1.의 본문<br>8째줄        | $aNA^{\theta-1} = \frac{n}{(\theta-1)!}$                                                                                                                                                                          | $aNA^{\theta-1} = \frac{n}{(1-\theta)!}$                                                                                                                                                                              | $\theta - 1 \rightarrow 1 - \theta$                         |
| p. 978<br>해당 페이지<br>3째줄           | $\frac{n}{(\theta-1)}$                                                                                                                                                                                            | $\frac{n}{(1-\theta)}$                                                                                                                                                                                                | $\theta - 1 \to 1 - \theta$                                 |